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Abstract. The localization and scaling behaviour of quasiperiodic structures are studied for a
geometry where the magnetization is perpendicular to the interfaces of the superlattices. Numerical
results for the bulk and surface spin waves in the magnetostatic regime are presented for the
Fibonacci, Thue–Morse and period-doubling sequences. The results are obtained for both ferro-
magnetic and antiferromagnetic ordering by using the transfer-matrix method. Interesting features
of the localized modes are shown for Fe, EuS and MnF2.

1. Introduction

Since the discovery of the icosahedral phase in Al–Mn alloys by Shechtmanet al [1], the field
of quasiperiodic structures (or quasicrystals) has caught a lot of attention. Several studies have
been made on these structures, for the electronic [2–7] and phonon [2,8] modes. Experimental
and theoretical results have been reported for different kinds of quasiperiodic structure, such
as Fibonacci [9, 10], Thue–Morse [11–13] and period doubling [14]. However, while these
results were related mainly to electronic and structure properties, little progress has been made
in experimental studies of non-periodic structures in the regime of magnetostatic modes.

The termquasicrystalis more appropriate for natural compounds or artificial alloys,
although in one dimension there is no difference between this and the quasiperiodic structure
formed by the incommensurate arrangement of periodic unit cells [9]. An appealing motivation
for studying these structures is that they exhibit a highly fragmented energy spectrum displaying
a self-similar pattern. Indeed, from a strictly mathematical perspective, it has been proven that
their spectra are Cantor sets in the thermodynamic limit [15,16].

With advances in multilayer fabrication (including epitaxial deposition [9], among other
methods) and in characterization techniques, such as x-ray scattering or neutron diffraction,
it is possible to reveal novel features of such structures. Also, several different mathematical
techniques including renormalization group [17,18] and transfer-matrix [19,20] methods have
been successfully applied, leading to remarkable results. For example, for the Thue–Morse
spectrum, it is known that the structure factor is composed of a sequence ofδ-peaks [21],
although they do not scale likeL2, L being the typical length of the system. In this case,
there are some conflicting results. Some authors [20] argue that the results in the case of the
electronic properties of the Thue–Morse sequence should depend on the nature of the model.
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However, this is not conclusively established and it may not apply in the case of magnetic
properties.

Spin-wave spectra in quasiperiodic magnetic structures have been recently investigated,
by considering the nature of the solutions for the appropriate wave field in each film. The
modes in these structures are coupled across the interfaces (through boundary conditions),
and are calculated with the assistance of Bloch’s theorem, where appropriate. The surfaces
and interfaces in these layered structures play an important role in the properties of the
entire system and for the excitations in particular. Many of the previous works have been
concerned with the spin-wave excitations in the low-temperature regime, where at least one of
the components is a ferromagnetic or an antiferromagnetic material. Furthermore, depending
on the relative importance of the magnetic dipole–dipole and exchange interactions, different
models for the magnetic behaviour can be employed. For instance, for sufficiently small values
of the excitation wavevector (k . 107 m−1), dipolar effects are dominant and magnetostatic
modes should propagate in such superlattices [22–24]. On the other hand, at larger excitation
wavevectors, typicallyk & 108 m−1 in a ferromagnet, the exchange interaction, which is the
restoring force for spin waves, will be dominant [24,25].

It is our aim in this work to investigate the magnetostatic modes in quasiperiodic structures
made up of magnetic and non-magnetic materials. By contrast to the case considered in
references [19] and [21], in which the authors consider the geometry where the wavevector
and the applied field are in the same plane (Voigt geometry), we consider here an in-plane
wavevector and an applied fieldH0 and magnetization (or sublattice magnetization for an
antiferromagnet) in the direction perpendicular to the interfaces. Our model is based on a
transfer-matrix formalism, to simplify the algebra, which is otherwise quite involved. The
localization and scaling properties of the spectra are also presented and discussed.

The remainder of this paper is organized as follows. The basic definitions of our structures
and the mathematical outline are given in section 2. In section 3 we present some results
regarding the spin-wave excitations in different sequences, as well as different magnetic
materials. Finally, in section 4 we conclude and suggest some possible extensions of our
results.

2. Theoretical model

In the magnetostatic regime Maxwell’s equations give

∇ ·B = 0 (1)

∇× h = 0 (2)

whereB andh are related by the constitutive tensorial equationB = ↔
µh, and

↔
µ is the

permeability tensor. Here, we assume a temporal dependence exp(−iωt) for the fluctuating
fields, and the form of the matrix

↔
µ for a uniaxial material is

↔
µ =

[
µ1 iµ2 0
−iµ2 µ1 0

0 0 1

]
. (3)

One can show [27] that for a ferromagnetic material

µ1 = 1 +
4πγ 2HiM

γ 2H 2
i − ω2

(4)

µ2 = 4πγωM

γ 2H 2
i − ω2

(5)
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whereHi is the internal magnetic field in thez-direction, given byHi = H0 − 4πM. Also,
H0 is the external applied field,M is the saturation magnetization andγ is the gyromagnetic
ratio. WhenM is perpendicular to the surface, as in our case here, it gives rise to depolarizing
fields, and this is the reason for a decrease in the net magnetic field inside the material. For an
antiferromagnet we have

µ1 = 1 +
4πγ 2HAM

ω2
0 − (ω + γH0)2

+
4πγ 2HAM

ω2
0 − (ω − γH0)2

(6)

µ2 = 4πγ 2HAM

ω2
0 − (ω + γH0)2

− 4πγ 2HAM

ω2
0 − (ω − γH0)2

(7)

where

ω0 = |γ |[HA(2HE +HA)]
1/2. (8)

HereHE is the effective exchange field andHA is the anisotropy field. For this case,M is
the saturation magnetization of one of the sublattices, and the physical parameterω0 is the so-
called antiferromagnetic resonance frequency in zero applied field. The equations of motion
are derived as follows. From (1) and (2), we can define a magnetic scalar potentialφ, by
h = −∇φ. Using this together with (3), we obtain the expression[

µ1

(
∂2

∂x2
+
∂2

∂y2

)
+
∂2

∂z2

]
φ = 0. (9)

This equation is valid for both the magnetic and non-magnetic layers of a superlattice (but
in the latter case,

↔
µ = I, the identity matrix). By considering solutions of the form

φ = φ(z)ei(kx−wt) (10)

wherek is a wavevector (taken in thex-direction) parallel to the surface, and substituting into
(9), one gets (

−µ1k
2 +

d2

dz2

)
φ(z) = 0. (11)

The above equation has solutions of the formφ(z) = Aeαz +Be−αz, whereα may be complex
and is directly related tok by α = (µ1)

1/2k. We need to impose some boundary conditions at
interfaces in the layered structure, and this leads us to the requirement that bothφ and∂φ/∂z
must be continuous at any interface. By applying the boundary conditions, together with the
above set of equations, we obtain implicit expressions for the dispersion relations. In previous
work [28] on periodic structures it was shown that we need only considerµ1 < 0 in order to
obtain the bulk and surface modes. This has the consequence that for a ferromagnet, the range
of frequencies is|γ |Hi < ω < |γ |(HiH0)

1/2, while for an antiferromagnet with zero applied
field, the frequencies are confined to the rangeω0 < ω < (ω2

0 + 8πγ 2HAM)
1/2.

In order to construct the quasiperiodic superlattices, we define briefly here the rules of the
unit-cell growth; the unit cell consists of a sequence of building blocks (or layers), where the
arrangement of the layers follows the desired sequence. For the well-known Fibonacci (FB)
sequence, the rule isSn = Sn−1Sn−2, n > 2, whereS1 = A, S2 = AB. The FB rule is invariant
under the transformation A→ AB and B→ A. For the Thue–Morse (TM) sequence, the
rule of growth is defined bySn = Sn−1S

+
n−1, S+

n = S+
n−1Sn−1, with n > 1 andS0 = A and

S+
0 = B. Alternatively, this sequence can be grown following the inflation rules A→ AB

and B→ BA. Finally, for the period-doubling (PD) sequence, we haveSn = Sn−1S
+
n−1,

S+
n = Sn−1Sn−1, n > 1, also withS0 = A andS+

0 = B. The inflation rules for this sequence
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Figure 1. Magnetostatic bulk (shaded areas) and surface (dotted lines) modes for some quasi-
periodic structures: (a) the fifth generation of the Fibonacci sequence; the magnetic material is Fe,
and the physical parameters used here areH0 = 22 kG,M = 1.68 kG andR = 0.5; (b) the third
generation of the period-doubling sequence; here the magnetic material is the antiferromagnet
MnF2, with physical parameters given byH0 = 0.15 kG, M = 0.6 kG, HE = 550 kG,
HA = 7.78 kG andR = 0.5.

are A→ AB and B→ AA. All these inflation rules can also be understood as an invariance
condition, because they leave their respective sequences invariant when applied.

The number of blocks for the FB sequence increases with the so-called Fibonacci number
Fn, defined byFn = Fn−1+Fn−2 (considering the initial conditionsF0 = F1 = 1). For the TM
and PD sequences the size of the unit cell increases as a function of the sequence generation,
namely as 2n. As we shall see, this dependence has the consequence that for the TM and PD
sequences, the localization of the modes is stronger for lower values of the generation number.

In the above definitions, the layers A and B consist respectively of a magnetic material
having thicknessdA and a non-magnetic one having thicknessdB. The physical properties
of such materials are included in the definitions ofµ1 andµ2. The external fieldH0 in our
calculations is applied in thez-direction, which is perpendicular to the interfaces. This causes
the modes to behave quite differently from the case of the Voigt geometry [22,24]. In particular,
the Damon–Eshbach modes do not occur in our geometry, and there are multiple branches in
the spin-wave spectrum (e.g. see reference [26] for the case of periodic superlattices).

In magnetic quasiperiodic superlattices a relevant quantity is the ratio between the numbers
of magnetic and non-magnetic building blocks. For the FB sequence, as the sequence number
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Figure 1. (Continued)

tends to infinity, this ratio tends to thegolden mean, 1
2(1+
√

5) ' 1.618. For the TM sequence,
this ratio is constant and is equal to unity, but for the PD sequence this ratio is not constant,
and actually tends to 2 whenn→∞.

Now we apply our theory to the superlattices. Inside a layer A we consider solutions of
the type

φ(z) = A+eαz +A−e−αz (12)

and for a layer B

φ(z) = B+ekz +B−e−kz. (13)

Using these solutions, and definingL = nAdA + nBdB as the length of the unit cell, we
apply the boundary conditions (the continuity ofφ and∂φ/∂z) at the interfaces. The resulting
equations can be cast in a matrix form, involving the transfer matrixT of the problem, which
contains information describing the structure generated for a particular sequence. It can be
used to study the behaviour of the bulk and (when applied in an appropriate manner) the surface
modes. After some algebra we find that

|An+1〉 = T|An〉 (14)

where|An〉 is a column matrix of the amplitudesA± in the nth cell. The explicit form of
the transfer matrix is given in appendix A. A quasiperiodic superlattice is a structure whose
unit cell is formed using a non-periodic rule of growth. These unit cells are then stacked
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periodically to form a superlattice. In these terms, Bloch’s theorem is still applicable, giving

|An+1〉 = eiQL|An〉 (15)

whereQ is a real wavevector of the infinite superlattice. Using (14) and (15), the implicit
dispersion relation can be expanded as

cos(QL) = 1

2
Tr(T). (16)

If we consider now a semi-infinite superlattice (constructed in the regionz > 0), we can
still use equation (16), but we must deal with, in addition to the bulk modes withQ real, surface
modes withQ complex of the formQ ≡ iβ. For the surface modes, equations (14) and (15)
read

T11 + λ−1T12 = e−βL = T22 + λT21 (17)

whereλ = (α + k)/(α − k), and the constantβ must be chosen such that Re(β) > 0. If
we define the quantityxj ≡ 1

2 Tr(Tj ), whereTj stands for the transfer matrix describing the
j th-generation superlattice, one can show [3] that for the FB sequencexj obeys the recursion
relation

xj+1 = 2xjxj−1− xj−2. (18)

The expression above can be understood as a 3D tracing map, as can be seen from the
transformation

rj+1 = Trj = (2xjyj − zj , xj , yj ) (19)

whererj is a vector defined byrj = (xj , xj−1, xj−2) = (xj , yj , zj ). The quantity

I = x2
j+1 + x2

j + x2
j−1− 2xj+1xjxj−1− 1 (20)

can be shown to be independent of the mapping (19) (i.e. independent ofj ), by using
equation (18).

3. Numerical results

We now apply our calculations to some specific magnetic materials. We defineR = dB/dA as
the ratio between the thicknesses of the non-magnetic and the magnetic layers, respectively.
The spectraω versuskdA of the spin waves in the magnetostatic regime are shown in figure 1.
Starting with the ferromagnetic case in figure 1(a), we consider the magnetic material A as Fe,
for the fifth generation of the FB sequence. The physical parameters used here are: for Fe [28]
H0 = 22 kG,M = 1.68 kG andR = 0.5; and for EuSH0 = 13.5 kG andM = 1.0 kG. On the
other hand, we consider MnF2 as the antiferromagnetic material, whose physical parameters
are [28]: H0 = 0.15 kG,M = 0.6 kG,HE = 550 kG andHA = 7.78 kG. As one can see
clearly in this and in the subsequent figures, we have a well-defined lower limit for the spectra,
for all values of the generation number and for all the different sequences. This happens when
we approach the frequency value (ω ' 2.48 GHz for the FB sequence, with the parameters
specified here for Fe) for which we have the limitµ1 → −∞. Also, there is an alternation
of the sequence of the roots for the boundaries of the bulk bands, as in reference [29]. For
the surface modes, which exist in the forbidden region of the spectra, corresponding to the
imaginary value of the Bloch wavevector, whenever one considers the sequence generation
numbern > 2, we have a natural broken symmetry for the structure. This fact implies that
we do not need to vary the thickness of the magnetic (or non-magnetic) materials in order to
obtain these modes [29], and this was also obeyed by all the sequences. However, we must
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be careful to impose the condition Re(β) > 0 in equation (17), because otherwise we can
obtain non-physical surface modes. Such modes are characterized by having an amplitude
with exponentialincreasing, and must therefore be excluded. In figure 1(b) we show the
spectra for the antiferromagnet MnF2, for the third generation of the PD sequence. In this case
the existence of an applied field gives rise to a gap between two regions of real solutions for
the bulk and surface modes (or withµ1 < 0). If we set the external field equal to zero, the
two regions collapse into one, still showing the same self-similar behaviour as in the previous
case. Also, the modes are sensitive to the value of the anisotropy field, having their relative
position governed by the magnitude ofHA. In both figures cited above, the limits of the bands
are given byQL = 0 andQL = π , such that we have an alternation from one band to another,
following the sequence 0, π, π,0, 0, π, π,0, . . ., starting from the upper band. Also, we do
not need to explicitly calculate the value ofβ for the surface modes, since we just need the
condition Re(β) > 0 to ensure physical solutions.

Figure 2(a) and figure 2(b) show the distribution of the magnetostatic bandwidths for high
generation numbers, which gives a good insight into their localization. From there we can infer
the forbidden and allowed modes as a function of the generation numberN . For largeN the
allowed band regions get narrow and narrower, as an indication of more localized modes. One
can see clearly that this has a Cantor-like behaviour, and we observed the same structure for the
other sequences. For example, in figure 2(b) we show a similar spectrum, but now for the TM
sequence, considering the antiferromagnet MnF2. As we have observed in other sequences,
there is a splitting of the spectra into two regions, governed by the magnitude of the applied
magnetic fieldH0. It can also be noticed that there exists a self-similarity between the two
regions for real solutions, and for both figures there exists a strong localization when one goes

Figure 2. The distribution of the bandwidths as a function of the quasiperiodic generation
numbers: (a) the Fibonacci sequence; the magnetic material used here is the ferromagnet EuS,
with H0 = 13.5 kG,M = 1.0 kG, kdA = 1.0 andR = 0.5; (b) the Thue–Morse sequence; the
magnetic material is the antiferromagnet MnF2, with the physical parameters as for figure 1(b).
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Figure 3. Scaling behaviour for the magnetostatic bulk modes: (a) the Fibonacci sequence;
(b) the Thue–Morse sequence; (c) the period-doubling sequence. The magnetic material for all
quasiperiodic systems here is considered to be Fe, and the physical parameters are the same as in
previous figures. The values ofδ for each of the wavenumbers are given in the insets.
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Figure 3. (Continued)

to higher values of the generation number (because of the limitation on what can be printed,
the regions get so narrow and close together that is difficult to see this feature). It has been
reported [30] that there exists a class of quasiperiodic potentials that do not exhibit localized
states (i.e. they can only have continuous spectra), but in that case the authors excluded the
golden mean, while in our case it appears naturally for the FB sequence.

The log–log plot of the bandwidths1 against the generation number for the FB sequence
is shown in figure 3(a). The labels at each of the points refer to the indexn of the generation.
In each figure, the magnitudes of the in-plane wavevector are represented by different symbols.
The crosses refer tokdA = 0.25, the triangles tokdA = 0.5, the circles tokdA = 1.0 and
the squares tok = 2.0. In figure 3(b) the same log–log graph is shown, but now for the TM
chain, and the scale behaviour for the PD sequence is depicted in figure 3(c). For the FB
sequence, the scaling law is1 ∼ (Fn)−δ, while for the TM and PD sequences, the bandwidths
scale as(2n)−δ. For the TM sequence, we see a stronger dependence ofδ on the in-plane
wavevector, compared to the case for the FB sequence, in the sense that the values ofδ are
higher for the same value ofk. Observe that the linear behaviour for all sequences is not well
fitted for lower values of the generation numbers of the quasiperiodic structures (2 and 3 for
FB, 1 and 2 for TM and PD). The reason for this is that this linear scaling is a typical property
of a fractal system, and low values of the generation numbern do not yet have a mark of
quasiperiodicity. For example, the FB unit cell forn = 2 is AB (the pure periodic superlattice
unit cell), and forn = 3 it is ABA, which gives a behaviour for the bulk modes quite similar
to that of the second generation, replacing A→ 2A. On the other hand, when one increases
the value ofn, one gets a fast increase of the number of the branches in all sequences and,
therefore, it causes a loss of precision for the lower region of the spectra, due to the limiting
behaviour ofµ1.
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4. Conclusions

In summary, we have obtained the bulk and surface solutions for the magnetostatic modes in
quasiperiodic structures, where the magnetization is perpendicular to the interfaces. Different
kinds of quasiperiodic system were considered. For the dispersion curves of the PD (figure 1(b))
and TM (figure 2(b)) sequences, the strong fragmentation of the bulk bands for higher values
of the generation number caused a loss of precision fork > 2.0 (mainly for the PD sequence),
so we considered this value as a good upper limit for the in-plane wavevector. For the
antiferromagnetic modes with non-zero applied field the two regions of real solutions show
patterns that are very similar to each other, and this feature was observed to be independent of the
sequence and of the generation number. Also, the order of the generation plays an important
role in the behaviour of the localization of the modes. A systematic study of the physical
parameters was made, and we found that the size of the bulk bands is quite sensitive to the ratio
R, although here we have obtained solutions even forR > 1.0 (or with structures which have a
non-magnetic spacer with a thickness greater than that of the magnetic material) [21,28]. There
exist other quasiperiodic sequences that can be studied as an extension of our work, following
the procedures described here, such as the Cantor [26,31–33], the Rudin–Shapiro [26] and the
random superlattices [26].

On the experimental side, the use of Brillouin scattering spectroscopy has proved to be an
important tool for probing experimentally the theoretical predictions for these excitations [34].
Besides, a knowledge of the spectrum of the spin waves in a superlattice allows one to describe
its linear response to an external source, such as an electromagnetic wave. The analysis can be
done through the use of Green function techniques. Possible applications include spin valves
and other multilayered devices.
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Appendix A. Explicit form of the transfer matrix T

The transfer matrixT in equation (14) depends on the sequence and the generation considered.
For the Fibonacci sequence, the matrixT for thenth generation is given iteratively by

TSn+2 = TSnTSn+1 (A.1)

where, forn > 1,

TS2 = N−1
α MkN

−1
k Mα

TS1 = MαN−1
α .

(A.2)

For the Thue–Morse sequence, we have a slightly more complicated rule for thenth-generation
T matrix:

TSn = N−1
α TBnTAn

Nα (A.3)

for n > 1, with

TAn+1 = TBnTAn
(A.4)

TBn+1 = TAn
TBn (A.5)

and

Tj1 = MξN
−1
ξ . (A.6)
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In the equation above, we consider(j = A, ξ = α) or (j = B, ξ = k).
Finally, for the period-doubling sequence, we have (n > 1)

TSn+2 = TSnTSnTSn+1 (A.7)

where

TS2 = TS0TS0TS1 (A.8)

TS0 = N−1
α Mα (A.9)

TS1 = N−1
α MkN

−1
k Mα. (A.10)

In all the equations above, the 2× 2 matricesNξ , Mξ (ξ = α, k) have the general form

Mξ =
[
fξ f̄ξ

ξfξ −ξ f̄ξ

]
(A.11)

Nξ =
[

1 1
ξ −ξ

]
(A.12)

where

fα = eαdA f̄α = 1/fα (A.13)

fk = ekdB f̄k = 1/fk. (A.14)

References

[1] Shechtman D, Blench I, Gratias D and Cahn J W 1984Phys. Rev. Lett.531951
[2] Kohmoto M and Banavar J R 1986Phys. Rev.B 34563
[3] Sokoloff J B 1985Phys. Rep.126189
[4] Liu Y and Chao K A 1986Phys. Rev.B 345247
[5] Roy C L, Khan A and Basu C 1995J. Phys.: Condens. Matter7 1843
[6] Roy C L and Khan A 1995Phys. Rev.B 4914 949

Roy C L and Khan A 1995Phys. Lett.A 196346
[7] Avishai Y and Berend D 1992Phys. Rev.B 452717
[8] Luck J M and Petritis D 1986J. Stat. Phys.42289

Riklund R and Severin M 1988J. Phys. C: Solid State Phys.21L965
[9] Merlin R, Bajema K, Clarke R, Juang F-Y and Bhattacharya P K 1985Phys. Rev. Lett.551768

[10] Todd J, Merlin R, Clarke R, Mohanty K M and Axe J D 1986Phys. Rev. Lett.571157
[11] Thue A 1906K. Norske Vidensk. Selsk. Skr. Mat. Nat. Kl. Christiania7 1

Thue A 1912K. Norske Vidensk. Selsk. Skr. Mat. Nat. Kl. Christiania131
[12] Morse M 1921Trans. Am. Math. Soc.2284
[13] Axel F and Terauchi H 1991Phys. Rev. Lett.662223
[14] Ghosh A and Karmakar S N 1998Phys. Rev.B 572834
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